
RAMP-CNN: A Novel Neural Network for Enhanced
Automotive Radar Object Recognition

Xiangyu Gao
University of Washington

Seattle, WA 98195
xygao@uw.edu

Guanbin Xing
University of Washington

Seattle, WA 98195
gxing@uw.edu

Sumit Roy
University of Washington

Seattle, WA 98195
sroy@uw.edu

Hui Liu
University of Washington

Silkwave Holdings
huiliu@uw.edu

Abstract

Millimeter-wave (mmW) radars are being increasingly integrated into commercial
vehicles to support new Adaptive Driver Assisted Systems by enabling robust and
high-performance object detection, localization, as well as recognition - a key
component of environmental perception. In this paper, we propose a novel radar
multiple-perspectives convolution neural network (RAMP-CNN) that extracts the
location and class of objects based on further processing of the range-velocity-angle
(RVA) heatmap sequences. To bypass the complexity of 4D neural network (NN),
we propose to combine several lower-dimension NN models within RAMP-CNN
model that nonetheless completely exploits the temporal and spatial information
with lower complexity. The extensive experiments show that our model achieves
better AP and AR than prior works in all testing scenarios. Besides, RAMP-CNN
is validated to work robustly under the nighttime, which enables low-cost radars as
a potential substitute for pure optical sensing under severe conditions.

1 Introduction

Millimeter-wave (mmW) radars provide highly accurate object detection and localization (range,
velocity and angle), largely independent of environmental conditions and are fast becoming indispens-
able in providing critical sensory inputs for environmental mapping for future autonomous vehicle
operations. In challenging conditions - nighttime, glaring sunlight, snow, rain or fog - the utility of
pure optical sensing (cameras and lidars) is diminished; hence the primary objective of this paper is
to enable low-cost radars as a potential substitute. To achieve this, radars should deliver semantic
environment perception close to what optical sensors provide.

FMCW radars transmit a linear frequency modulated signal; the received signal reflected from a target
is mixed with the transmitted signal to obtain the beat frequency that is a function of the round trip
delay and therefore can be mapped directly to range [1]. Similarly, transmitting a train of equispaced
FMCW chirps (also called a frame) allows Doppler velocity estimation for scenarios where the target
undergoes (relative) radial motion. Such radial motion induces a phase shift over the chirps in a range
resolution cell, which is used to compute the Doppler radial velocity [1]. Finally, the use of multiple
transmitters and multiple receivers (MIMO) configuration on radar enables azimuth localization
of targets, by appropriate digital signal processing of the multiple transmitted waveforms reflected
by the target to receiver array [2]. In summary, the ADC raw radar data - that has 3 dimensions:
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Figure 1: Abstraction of single frame input radar
data and corresponding camera image: (a) The cam-
era image of the pedestrian; (b) The range-velocity-
angle radar data cube, three cross profiles of it are
shown as figure (c), (d) and (e); (c) The range-
azimuth angle heatmap; (d) The range-velocity
heatmap; (e) The velocity-azimuth angle heatmap.

samples (fast time), chirps (slow time), and receivers - can be mapped to the 3D radar cube with 3
new dimensions: range, Doppler velocity, and angle. In this paper, we adopt the 3-DFFT (Range FFT,
Velocity FFT, and Angle FFT) [3] to obtain the 3D radar cube and name the generated radar cube
range-velocity-angle (RVA) heatmap 1 2.

The small form factor of 77 GHz FMCW radar boards - while a desirable feature - also limits the
number of antennas that can be integrated, resulting in poor angular resolution. Specifically, two
targets at the same distance and same radial velocity are not resolved in angle if separated by less than
the resolution beamwidth, and even if resolvable, the spatial dimension is not well-defined. Hence to
achieve reliable object recognition using such hardware, prior works [3, 4] have sought to exploit the
unique movement patterns over time for different classes of objects, i.e. rely on temporal patterns
over multiple frames rather than spatial discrimination from single-frame data.

While several prior works [3, 4, 5, 6, 7] explore radar object recognition with various input data
formats using neural networks, none has ever combined the spatial and temporal domain information,
i.e., by jointly processing the 3D radar cube sequences (from multiple frames). Our fundamental
contribution is a deep learning network design that approaches performance upper bound since the
joint processing can exploit all available information (see Section 3.1).

However, it is impractical to implement 4D (above 3D plus time sequences) convolution processing
as the resulting computational complexity is unacceptable for real-time perception. Therefore, we
propose to use the combination of several lower-dimension (3D) models that nonetheless exceed the
performance of prior methods with acceptable complexity (see Table. 4). Basically, each 3D radar
cube (RVA heatmap) is sliced into 2D images from 3 perspectives, that is, range-angle (RA) heatmap,
range-velocity (RV) heatmap, and velocity-angle (VA) heatmap, as shown in Fig. 1. The RA, RV, and
VA heatmap sequences are then processed by three parallel DL models to generate different feature
bases, which are fused to make the object recognition decision (see Fig. 2). We name above radar
network architecture RAMP-CNN.

To avoid the overfitting when training RAMP-CNN model, we propose a new loss function that
pushes NN to learn more from the RV and VA features and avoids it to give more weights to the
straightforward and accessible RA features than the velocity-based features (see Section 3.3).

2 Related Work

We comment on the relevant prior works [3, 4, 5, 6, 7] that have attempted radar object detection with
various radar data input formats.

[4] uses the short-time Fourier transform (STFT) intensity (heatmap) as the input and implements
several existing DL models to extract micro-Doppler patterns from it, with up to 93% recognition
accuracy when evaluated for three classes discrimination. Further on, [3] propose a new framework
to cess the raw radar data and enhance radar object classification by incorporating the additional
spatial information. However, the above methods are all two-stages architecture where the regions

1In general, by the heatmap we refer to the complex image resulting from the FFT operations. When for
visualization purposes, we take the amplitude value of the complex heatmap.

2In this paper, angle represents the azimuth angle if not specified.
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Figure 2: The architecture of RAMP-CNN model

of interest (i.e., the location of objects) need to be found before the classification. Besides, several
prepossessing procedures (i.e., CFAR detection, DBSCAN clustering, etc) are adopted before feeding
the radar input to neural network, which may make the information incomplete.

[6] presents a single shot detection and classification system in urban automotive scenarios, which is
based on the YOLO system applied to the cessed range-Doppler-angle power spectrum with a 77
GHz FMCW radar. To feed the 3D radar power spectrum into the 2D YOLO network, [6] condense
the angle domain by choosing the maximum. The range-angle domain is the main perspective to
observe the objects’ reflection ability and shapes such that condensing the angle is not the best choice.

[5] illustrates a deep-learning-based vehicle detection solution that operates on the image-like range-
velocity-angle radar tensor. The ability of its accuracy vehicle detection in the high way scenario
mainly relies on recognizing the energy distribution on the range and angle dimension (i.e., the
contribution of the Doppler dimension to detection is small). This may be hard for solving the various
object detection and classification problem we have.

[7] shows a radio object detection network that acts purely on the processed radar data in the format
of RA heatmap sequences. The adopted autoencoder structure in [7] that processes the RA heatmap
sequences exploits the temporal information behind the change of spatial patterns across frames.
However, for each frame, [7] just randomly picks one range-angle heatmap of a chirp signal, which is
convenient but gives up the abundant velocity information behind the phase change across the chirps.

3 RAMP-CNN model: A Convolutional Neural Network for Radar Data

3.1 3-Perspectives Autoencoders

As shown in Fig. 2, the main body of the RAMP-CNN architecture is composed of 3 convolutional
autoencoders (CAE). The autoencoders extract features from the heatmap sequences of different
perspectives - that is, RA, RV, and VA respectively.

The Physical Significance of Network Design : The first CAE processes complex-valued RA
heatmap sequences with 3D convolution (conv) and transposed convolution (transposed conv) layers.
Similar to [7], we pick one RA heatmap from each frame to form the heatmap sequences, and the
singled out RA heatmap is obtained by computing Range FFT and Angle FFT [3] at an arbitrarily
selected chirp. Those 3D conv operations take advantage of not only the object’s spatial patterns in a
single frame but also the temporal information behind the change of spatial patterns across frames.
Some aspects of spatial patterns - like the distribution of reflection intensity - directly contribute to
object recognition, e.g., larger objects (vehicles) contain more stronger-reflectors than small objects
(humans).

As the RA heatmap input is with the complex-valued format,the temporal change of spatial patterns
across multiple frames can be expressed as the change in both amplitude and phase. The phase
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change of mmW signal along time is sensitive to the object movement, e.g. 1 mm position movement
results in phase shift ∆φ = π for 77 GHz radar. While the sampling rate of RA heatmap input is a bit
lower (30 FPS), we still believe the embedded phase shift would provide additional benefit compared
to the amplitude-only input.

The second and third CAE process the absolute-valued 3 RV and VA heatmap sequences respectively.
The RV and VA heatmaps are calculated from the original RVA heatmap by summing the power over
the omitted dimension. What two CAEs have in common is: in single heatmap, they extract features
from the distribution of range-velocity or velocity-angle cells; while across multiple heatmaps, they
extract object’s movement patterns from the change of radial velocity with time. These two CAEs
essentially utilize the abundant velocity-based information behind the phase change across chirps
within each frame, which is the biggest difference from [7].

Network Details: We adopt the 3D Convolutional-De-Convolutional [8] model as our CAE, which is
effective in summarizing spatio-temporal patterns from raw data into high-level semantics. Each CAE
includes six 3D conv layers and three 3D transposed conv layers. All 3D conv layers are followed
by a batch-normalization layer and the ReLU activation function. The first two 3D transposed conv
layers are followed by the PReLU activation function.

To preserve the phase information in RA heatmap input, we represent complex-valued heatmap by
two real-valued channels that store the real and imaginary parts following [9] (i.e., similar to RGB
channels). While for RV and VA heatmap inputs, it suffices to only keep the absolute value and use
the one-channel heatmap.

3.2 Feature Fusion Module

Figure 3: Feature Fusion Module

The key issue is how to transform the RV
and VA features to RA domain such for sup-
porting an improved final classification. In
Fig. 3, the VA feature is condensed along
the velocity dimension by summing, then
the condensed vector is replicated in the
missing dimension - range, and similarly
for RV feature. Thereafter, we concatenate
all features along channel dimension and
input them to following network. The be-
low analogy applied to radar processing
suggests how to use VA feature - that provides good azimuth angle information but no range informa-
tion.

This is similar to initial human perception using the visual sensor (eyes) supported by supplementary
sense organs (ears, nose) for final determination. A person with impaired eyesight will rely more on
the other sensors, i.e. acquire initial angle information/feature via the ear 4.

Convolution Layers after Feature Fusion Module: There are two conv layers that take as input
the fused features and make recognition decisions: one 3D inception layer, and one ordinary 3D
convolution layers with kernel size (3, 3, 3). Note that the ordinary conv layer operates on time, range
and angle dimension, while the inception layer operates on the channel, range and angle dimension
of fused features. To avoid collapsing time dimension on inception layer, we repeat the operation on
each timestamp and concatenate the inception results along the time dimension.

The 3D inception layer includes 3 convolution kernels: (3, 5, 5), (3, 3, 3), (3, 1, 21). The first two
kernels allow the model to take advantage of multi-level feature extraction. The last kernel with
dilation 6 is used to push the neural network to observe a larger area in angle - hence to solve the
false alarm problem on the side-lobes 5. We make it dilated convolution - with angular kernel size 21
and dilation 6 - to cover almost all angle cells, as well as to reduce complexity.

3We adopt the absolute-valued RV and VA heatmap here, since the phase change we are interested in have
been preprocessed with Velocity FFT and been represented in the Doppler domain.

4The ear does not provide good range localization, and hence suggests an equal probability prior to range.
5The side-lobe in radar heatmap is easy to be recognized as objects with class, because the convolution-kernel

operators of CAEs do not force each feature to be global (i.e., to span the entire visual field) [10].
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Figure 4: Radar-Camera data capture platform: (a) This
platform consists of 2 FLIR cameras and two perpen-
dicular radars from TI - the right radar is with the 1D
horizontal antenna array, and the left one is with the
1D vertical antenna array. (b) Data capture platform
mounted on a vehicle with front view.

Figure 5: 8 scenario examples in the collected UWCR
dataset: row 1, 3 are the camera images; row 2, 4 are
the corresponding radar range-azimuth angle heatmaps.

3.3 Loss Function for All-perspectives Learning

To ease the training burden, we use the center keypoint to represent the existence of objects following
[11]. For each ground truth center point p with location (pr, pθ), class id pc and frame id pt, we com-
pute its Gaussian representation, and then splat all Gaussians onto a heatmap Y ∈ [0, 1]D×W×H×C ,
and take the element-wise maximum if two Gaussians overlap 6. Y is used as ground truth.

Let XRA, XRV, XVA be the input RA, RV and VA heatmap sequences, the aim of RAMP-CNN model
is to predict center-point heatmaps [12] Ŷ ∈ [0, 1]D×W×H×C in RA domain, where Ŷt,r,θ,c = 1

corresponds to a detected target at range r, azimuth angle θ, frame t and class c, while Ŷt,r,θ,c = 0

represents background. The prediction Ŷ includes a map for every frame time. The center point types
include C = 3 classes of objects: pedestrian, cyclist, and car.

For the prediction Ŷ and ground truth Y , the training objective is a modified penalty-reduced
pixelwise logistic regression with focal loss [12, 13]:

LŶ Y = −1
Nobj

∑
t

∑
r

∑
θ

∑
c


κ(1− Ŷt,r,θ,c)α log(Ŷt,r,θ,c) if Yt,r,θ,c = 1

κ(1− Yt,r,θ,c)β(Ŷt,r,θ,c)
α log(1− Ŷt,r,θ,c) if Yt,r,θ,c = 0

and Yt,r,θ,c̄ > 0

(1− Yt,r,θ,c)β(Ŷt,r,θ,c)
α log(1− Ŷt,r,θ,c) otherwise

(1)

where α and β are hyper-parameters of the focal loss [13], and Nobj is the number of objects in
ground truth 7. Compared to [13], we add a new scalar hyper-parameter κ, which put more loss/focus
at the region where objects exist to shorten the training time. In this paper, we choose κ = 4 and
following [12], we use α = 2 and β = 4 in all our experiments.

When designing the loss function, we also take account of the fact that NN may well give more
weights to the straightforward and accessible RA features than other velocity-based features, leading
to overfitting. This point can be illustrated with the above human perception example again. A person
with unimpaired eyesight will not rely much on the other sensors (ears, nose), thus resulting in weaker
supplementary function compared to a person with impaired eyesight 8.

The above analogy applied to loss function design suggests how to make NN fully utilize all three
perspectives and particularly enhance the supplementary function provided by RV and VA perspective.
We add a new loss constraint LŶ ′Y besides the original loss term LŶ Y mentioned above. To obtain
LŶ ′Y , we set XRA = 0 in the new loss term, i.e., we input X = (0, XRV, XVA) to NN Pw(Y |X)

again such that getting the new prediction Ŷ ′. Ŷ ′ is also supervised by ground truth Y with (1).
6The symbols D, W , H and C here represent the size of heatmap Y on time, range, azimuth angle and class

dimension respectively.
7The normalization by Nobj is chosen as to normalize all positive focal loss instances to 1.
8To train this supplementary function for a non-disabled person, it is better to create a situation where eyes

are not working, e.g., blindfolding
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Figure 6: 10 test examples from the parking lot scenario (col 1-3), curbside scenario (col 4-6), and on-road
scenario (column 7-10). For each column, the top row is the synchronized camera image for visualization, the
second row is radar RA heatmap, and the bottom row is the visualization 9of the RAMP-CNN model results.

Table 1: Performance comparison between different models
Model Overall Parking Lot Scenario Curbside Scenario On-road Scenario

AP AR AP AR AP AR AP AR

CDMC [3] 30.55% 54.79% 65.74% 76.56% 28.68% 53.93% 4.88% 25.76%

RODNet-HG [7] 71.84% 76.03% 93.87% 95.36% 61.65% 70.09% 41.97% 53.04%

RODNet-CDC [7] 71.46% 78.15% 92.72% 95.07% 64.01% 71.97% 46.52% 58.61%

Prop. RAMP-CNN 81.23% 84.25% 97.38% 98.37% 79.25% 84.21% 57.07% 64.85%

The final loss is the weighted sum of two terms:

Lloss = LŶ Y + γLŶ ′Y (2)

where γ is the hyper-parameter to balance two terms, chosen to be γ = 0.5 in this paper.

4 Experiment

4.1 UW Camera-Radar (CR) Dataset

A large camera (image) and radar (raw I-Q samples post demodulated at the receiver) dataset for
various objects have been collected for multiple scenarios - parking lot, curbside, campus road, city
road, freeway by a vehicle-mounted platform that is driven (see Fig. 4(b)). In particular, significant
effort was placed in collecting data for situations where cameras are largely ineffective, i.e. under
challenging light conditions. We show several examples in our UWCR dataset at Fig. 5.

The binocular cameras in the data collection platform (Fig. 4(a)) are synchronized with radars, and
they can provide the location and class of semantic objects via the Mask R-CNN object detection
[14] and unsupervised depth estimation [15, 16] on captured images. The semantic object detection
results and depth estimation results generated from cameras are manually calibrated and then saved
as the requisite ground truth for the following training and evaluation.

4.2 Experiments

Pre-processing and Training: We implement the 3-DFFT [3] on raw radar data to obtain the RVA
heatmap sequences. The FFT for all are 128 points. We choose input frame number M = 16.
Therefore, the size of input data is 128 × 128 × 128 × 16. We train the RAMP-CNN with Adam
optimizer, and data augmentation (flipping, tranalating, interpolating, and mixing).

Baselines: We compare the RAMP-CNN model with RODNet-CDC [7], RODNet-HG [7] (double
the conv layers of RODNet-CDC), the state-of-art radar object detection models, as well as the CDMC
[3], a model that fully exploits the micro-Doppler signatures of moving objects.

Evaluation Metrics: We use the Average Precision (AP) and Average Recall (AR) to evaluate the
performance - using tp, fp, and fn 10. We adopt the CFAR [17] algorithm and threshold 0.2 to filter

9In Fig. 6 and 7, we use different icons to visualize the occurrence of targets.
10Here, the true positive (tp) represents correctly located and classified instances, false positive (fp) represents

the false alarm, false negative (fn) represents the missed detection and/or incorrectly classified instance.
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out the target center points from prediction Ŷ . Whether the targets are correctly located is determined
by a object size-adaptive distance threshold.

4.2.1 Experiment 1

Figure 7: 3 test examples from the night-
time scenario

We train the RAMP-CNN with the whole training set and
test it separately under the daytime parking lot, curbside,
city-road, as well as the nighttime city road.

The daytime scenario: As shown in Table.1, for parking
lot scenario, RAMP-CNN achieves nearly perfect perfor-
mance (97.38% AP, 98.37% AR), and beat all prior works.
For curbside scenario, it has around 15% improvement
over the state-of-art results. For city-road scenario, RAMP-
CNN obtains about 10% improvement in AP and 6% im-
provement in AR over RODNet-CDC baseline. Several
testing examples are shown in Fig. 6.

The nighttime scenario: The RAMP-CNN model is also
tested under nighttime (where cameras are largely ineffec-
tive) to advance the cause of radar as a low-cost substitute

for optical sensors that fail under such conditions. Shown in Fig. 7, RAMP-CNN performs as well
as under the daytime scenario, i.e. radar is impervious/robust to sunlight change. As it is hard to
implement the ground truth labeling on the nighttime test set, we don’t numerically evaluate the
performance of RAMP-CNN model here.

4.2.2 Experiment 2

Table 2: Performance comparison between different
models for static objects and moving objects

Model Static object scenario Moving object scenario

AP AR AP AR

CDMC [3] 32.34% 50.73% 28.68% 53.93%

RODNet-HG [7] 56.26% 61.36% 61.68% 70.11%

RODNet-CDC [7] 65.02% 69.91% 64.01% 71.97%

RAMP-CNN 67.58% 70.27% 79.25% 84.21%

We redivide part of data into the static object sce-
nario and moving object scenario, and test them
separately.

As shown in Table. 2, for static object scenario, the
performance of RAMP-CNN (AP around 67%, AR
around 70%) is in the same level of the RODNet-
CDC baseline; while for moving object scenario,
there is a performance gap (about 15% AP and
13% AR) between RAMP-CNN model (AP around
80%, AR around 84%) and other baselines (AP around 65%, AR around 71%).

The results proves the RAMP-CNN model achieves better performance for moving object recognition,
since it fully exploits the temporal information behind the chirps within one frame, as well as the
change of spatial information (range-angle information) across frames.

4.3 Discussion

The proposed RAMP-CNN model achieves significant performance improvement over the previous
works on the recognition of radar objects under daytime scenario. Although in some cases the radar
object recognition functionality might still be thought of as poor for supporting autonomous driving,
RAMP-CNN establishes a new state-of-art baseline and can be further improved via incorporating
more pre-processing or spatial resolution.

There are several other advantages of applying RAMP-CNN to mmW radars - it has excellent range
localization ability because of the centimeter-level range resolution of mmW radar (∼3.75 cm with
4 GHz sweep bandwidth). As shown in Fig. 6 (column 10), RAMP-CNN can resolve and localize
multiple close pedestrians with range. Besides, RAMP-CNN has good generalization for other input
data with a higher dimension. For example, if we add the elevation dimension (from the vertical radar
array) to the current RAMP-CNN input, then the formed 5D data can still be sliced and processed by
several lower-dimension (3D) models that will nonetheless achieve better performance with relatively
low computational complexity.
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5 Analysis and Ablation study

5.1 Ablation Study

We retrain a new RAMP-CNN model that replaces the proposed training loss with the ordinary
focal loss [12, 13]. The experiment results shown in Table. 3 verify that new training loss helps
improve performance by pushing the RAMP-CNN model to learn more Doppler-related features.
Specifically, the RAMP-CNN model obtains around 4% AP improvement and 3% AR improvement
in both parking lot scenario and curbside scenario as well as the on-road scenario.

It is worth noting that major performance improvement comes from the main body of RAMP-
CNN model (3-Perspectives Model); the cumulative impact of all elements in the RAMP-CNN
architecture results in promising performance improvement, at the expense of increased complexity.

Table 3: Ablation Study
Model New training loss Overall Parking lot scenario Curbside scenario On-road scenario

AP AR AP AR AP AR AP AR

RAMP-CNN 76.93% 81.41% 93.90% 95.46% 75.52% 81.81% 54.10% 61.86%

RAMP-CNN ! 81.23% 84.25% 97.38% 98.37% 79.25% 84.21% 57.07% 64.85%

5.2 Complexity Analysis

Time complexity: We count the number of floating-points operations (FLOPs) required by all
convolutional layers [18], as well as the frame-level prediction time, to measure the time complexity.

Space complexity: Space complexity quantifies the amount of memory needed by an algorithm to
run. In Table. 4, we adopt the number of parameters, size of the all feature map output to measure it.

From Table. 4, we know that RAMP-CNN model needs almost 100 times fewer FLOPs, around half
amount of parameters, and 35 times smaller feature map size, compared to 4D-CDC model. For
practical application, this means RAMP-CNN would not only run 100 times faster than 4D-CDC
for both training and inference, but also take 35 times less memory, which confirms the claimed
statement. Also, compared to RODNet-CDC, the time and space complexity of RAMP-CNN is
around 3 times higher. That, however, means the performance improvement of RAMP-CNN comes
at the expense of increased complexity.

6 Conclusion and Future Work

In this paper, we propose a novel RAMP-CNN model for radar object recognition that can obtain the
location (range and azimuth angle) and class of the objects in each frame by inputting the 3D radar
cube sequences. The RAMP-CNN model fully exploits the temporal and spatial information, which
makes it achieve significant performance improvement over the previous work. For future work, we
are continuing to explore how to utilize the radar data effectively and create a more sensible radar
neural network based on radar data properties.

11To compare the complexity between one 4D model and RAMP-CNN model model, we replace the 3D
convolution kernels in RODNet-CDC model with the 4D convolution kernels and call the new model 4D-CDC.

12Note: we didn’t implement the 4D-CDC model, so the prediction time is ignored here.

Table 4: Complexity Analysis
Model Time Complexity Space Complexity

FLOPs Prediction time (per frame) Parameters amount Feature map size

RODNet-CDC 4.75× 1011 11.2 ms 3.47× 107 6.31× 107

4D-CDC 11 1.64× 1014 - 12 1.79× 108 6.58× 109

RAMP-CNN 1.41× 1012 31.1 ms 1.04× 108 1.89× 108
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